Where Does Your Water Come From? Sources of the City of Tracy's water supply include the Stanislaus River, the Delta-Mendota Canal, and groundwater pumped from wells. In 2015, 73% of the water supply, or 3.4 billion gallons, came from the Stanislaus River. Water from the Delta-Mendota Canal comprised 23% of the total water supply, or 1.05 billion gallons. The groundwater supply comprised 4%, or 0.17 billion gallons of the total water supply. During 2016, the City anticipates having an adequate water supply for the community. This is due to the healthy groundwater supply (well water) underneath Tracy. Unfortunately, using well water results in an increase in water hardness (mineral content), however, the water is still safe to drink. City staff will minimize the use of well water as much as possible. In addition, residents and businesses are encouraged to conserve water whenever possible. ## Water Quality Control Before the water reaches your tap, samples are collected and tested in State-certified laboratories. The City of Tracy has a water quality monitoring program and inspection system that ensures safe drinking water is delivered to you and your family. As required by the Federal Safe Drinking Water Act, the City's water supplies must meet stringent water quality standards set by the California Department of Public Health and the United States Environmental Protection Agency. The City of Tracy completed a watershed sanitary survey of its drinking water sources in 2016. This survey can be obtained by contacting the Water Production Superintendent at the number provided below. Water customers who are landlords receiving this report are asked to share this information with any tenant or user on the premises. The City of Tracy staff is available to answer your questions and provide further information: (209) 831-6302. 10 GALLONS 12.5 GALLONS FILL THE BATHTUB HALFWAY OR LESS Learn more ways to save water inside and outside of your home at www.saveourH2O.org! # CITY OF TRACY The City of Tracy is pleased to report that from January I - December 31, 2015 the water delivered to your home or business complied with, or exceeded, all state and federal drinking water requirements! Provided in this brochure is a table that lists detectable and non-detectable substances found in the City's drinking water, and the maximum allowable substance levels set by United States Environmental Protection Agency (USEPA). In California, drinking water standards, also called Maximum Contaminant Levels (MCLs), are set in two categories: Primary Standards related to public health, and Secondary Standards which relate to the aesthetic qualities such as taste, odor, and color. Within you will find a complete listing of both types of standards along with the results of the analysis of your water supply. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. tandards This publication conforms to the regulation under SDWA requiring water utilities to provide detailed water quality information to each of their customers annually. We are committed to providing you with this information about your water supply because customers who are well informed are our best allies in supporting improvements necessary to maintain the highest quality drinking water Safe Drinking Water Act (SDWA), USEPA is Under the Safe Drinking Water Act (SDWA), USEPA is responsible for setting national limits for hundreds of substances in drinking water and also specifies various treatments that water systems must use to remove these substances. Each system continually monitors for these substances and reports directly to the California Department of Public Health if they were detected in the drinking water. USEPA uses this data to ensure that the consumers are receiving clean water and to verify that consumers are receiving clean water and to verify that states are enforcing the laws that regulate drinking water. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transsome elderly and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC (Center for from their health care providers. USEPA/CDC (Center for from their health care providers. USEPA/CDC (Center for the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Contaminants are available from the Safe Drinking Water Hotline (800) 426-4791. Special Health Information ing water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health nation about contaminants and potential health celfects can be obtained by effects can be obtained by calling the USEPA's Safe of the contaminants and potential health nation about contamination about contamination and potential health nation about contamination and potential health nation about contained by effects can be obtained by effects can be obtained by effects can be obtained by effects of the contained by In order to ensure that the tap water is safe to drink, USEPA and the California Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. California Department of Public Health regulations also establish limits for contaminants in bottled water regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Drink- tivities. gas stations, urban runoff and septic systems; Radio Active Contaminants, which can be naturally occurring or be the result of oil and gas production and mining ac- residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can, also come from gas production, mining, or farming; Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and • Inovganic Contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include: Substances Expected to be in the Drinking Water The biggest use of water by homeowners and businesses is outdoor activities. Mandatory outdoor water conservation measures include: using a triggered handheld sprayer and bucket when washing your own car; and turning off non-recirculating fountains and ornamental water features. Some simple voluntary measures are: turning off irrigation timers in the winter months; never water landscaping on a windy day; and do not water for longer than 8 minutes per cycle. For more information on drought conditions visit http://www.water.ca.gov/waterconditions/drought/. Also, you may report any water waste by calling (209) 831-4333 or online at www.thinkinsidethetriangle.com. You're continued efforts will sasist the City in attaining its water conservation goals! What are you able to do to help? Some simple indoor measures include: taking shorter showers, turning water off while shampooing, washing full loads of laundry, never using the toilet as a trash receptacle, repairing drips and leaking faucets quickly, and always turning off water while brushing teeth. Businesses might always turning off water while brushing teeth. Businesses might oconsider changing out high water consuming appliances and toilets to more efficient models. WATER YOU DOING TO CONSERVE? The City has prepared for such droughts with a diverse portfolio of water supplies and public outreach campaigns. In an effort to meet the State's requirements the City enacted Phase IV of its Water Conservation Ordinance which limits outdoor watering to three days per week and only during the hours of 7 pm to 9 am. It further restricts the use of potable water to wash hard-scapes such as patios, driveways, sidewalks and gutters. City staff discourages water waste through the education and communication of its municipal code. Under the revised regulation, statewide water conservation is expected to exceed 20 percent compared to 2013 water use. Due to the severity of the water deficits over the past four years, many of California's reservoirs and groundwater basins remain depleted and the need for continued water conservation persists. The State's new action serves as the fourth iteration of the emergency regulation since the State Water Board first instituted statewide conservation requirements in July 2014. The State of California will continue to be in an extreme drought designation for the summer of 2016 according to the California Despite the recent rains, the State Water Board adopted an extended and revised emergency drought regulation to ensure that urban water conservation continues in 2016. Under the Governor's mandate, the City of Tracy was designated to conserve 28% city-wide. WATER CONSERVATION IS MANDATORY! # What's in My Water? | | TREATED
SURFACE
WATER | TREATED
SURFACE
WATER | WELL WATER | | | REGULATORY LIMITS | | | |---------------------------------|--|-------------------------------------|------------------------|----------|---------|-------------------|---------------------------------------|---| | ANALYTICAL PARAMETER | SOUTH SAN JOAQUIN
IRRIGATION DISTRICT | JOHN JONES WATER
TREATMENT PLANT | AVERAGE | MINIMUM | MAXIMUM | MCLG or PHG | MAXIMUM
CONTAMINANT LEVEL
(MCL) | TYPICAL SOURCE | | PRIMARY STANDARDS | | | | | | | | | | INORGANIC (ug/L) | | | | | | | | | | Aluminum | ND | 31 | ND | ND | ND | none | 200 ug/L | Erosion of natural deposits | | Arsenic | ND | 1 | 2.1 | 1.2 | 3.8 | 0 | 10 ug/L | Erosion of natural deposits | | Barium | ND | 32 | 29 | 23 | 41 | 2000 | 1000 ug/L | Erosion of natural deposits | | Chromium | ND | ND | 3.9 | ND | 8.4 | 100 | 50 ug/L | Erosion of natural deposits | | Copper | ND | ND | 6.7 | 5.8 | 7.6 | 170 | 1000 ug/L | Erosion of natural deposits | | Iron | ND | ND | 54 | 32 | 98 | NA | 300 ug/L | Erosion of natural deposits | | Manganese | ND | ND | 9.2 | ND | 37.0 | NA | 50 ug/L | Erosion of natural deposits | | Zinc | ND | ND | 2.8 | ND | 25.0 | NA NA | 5000 ug/L | Erosion of natural deposits | | FLUORIDE (mg/L) | | | | | | | | | | Fluoride | ND | 0.089 | 0.14 | 0.07 | 0.19 | 1.0 | 2.0 mg/L | Erosion of natural deposits | | ASBESTOS | | | | | | 1.0 | 2.0 HigiE | Erosion of flatural deposits | | Asbestos | | | | | | 0 | 7 MFL | | | NITRATE/NITRITE | | | | | | U | 7 IVII L | | | Nitrate (as NO3) ¹ | ND | 1.1 | 6.4 | ND | 15.0 | 45 | 4E mail | Dunoff from fortilizer use: Freeign of natural | | | ND
ND | 0.24 | 1.5 | ND
ND | 3.4 | 45 | 45 mg/L | Runoff from fertilizer use; Erosion of natural | | Nitrate + Nitrite (sum as N) | ND
ND | ND | ND | ND
ND | ND | 10 | 10 mg/L | deposits | | Nitrite (as N) | NU | ND | NU | NU | NU | 1 | 1 mg/L | | | REGULATED ORGANICS (ug/L) | | | | | | | | | | TRIHALOMETHANE | 4.7 | ND | 0.07 | | 4.00 | | | | | Bromodichloromethane | 1.7 | ND | 0.27 | ND | 1.20 | NA | ug/L | | | Bromoform | ND | ND | ND | ND | ND | NA | ug/L | | | Chloroform | 21 | ND | 2.5 | ND | 17 | NA | ug/L | | | Dibromochloromethane | ND | ND | ND | ND | ND | NA | ug/L | | | Total Trihalomethane | 23 | ND | 2.7 | ND | 18 | NA | 80 ug/L | By-product of drinking water chlorination | | SECONDARY STANDARDS | | | | | | | | | | Aesthetic - Related | | | | | | | | | | Apparent Color (Units) | ND | ND | 1.7 | ND | 10.0 | NA | 15 Units | Naturally occurring organic materials | | Foaming Agents (MBAS) (mg/L) | ND | ND | ND | ND | ND | NA | 0.5 mg/L | Municipal and industrial waste discharge | | Odor (TON) | ND | 2 | 1.0 | ND | 2.0 | NA | 3 TON | Naturally occuring organic materials | | Potassium (K) (mg/L) | ND | 4.2 | 3.3 | 1.3 | 4.7 | NA | NS | Erosion of natural deposits | | Turbidity (NTU) ² | ND | 0.2 | 0.75 | 0.16 | 2.90 | NA | 5 NTU | Soil runoff | | Bicarbonate (HCO3) (mg/L) | 75.6 | 72 | 144 | 58 | 210 | NA | NS | Erosion of natural deposits | | Total Alkalinity (CaCO3)(mg/L) | 62 | 59 | 120 | 48 | 170 | NA | NS | Erosion of natural deposits | | Boron (B) (mg/L) | ND | 0.23 | 1.5 | 0.2 | 2.4 | NA | NS | Erosion of natural deposits | | Calcium (Ca) (mg/L) | 24.6 | 22 | 62 | 20 | 90 | NA | NS | Erosion of natural deposits | | Magnesium (Mg) (mg/L) | 2.1 | 18 | 23 | 5 | 32 | NA | NS | Erosion of natural deposits | | Sodium (Na) (mg/L) | 4.3 | 94 | 128 | 24 | 190 | NA | NS | Erosion of natural deposits | | Total Hardness (CaCO3) (mg/L) | 38 | 130 | 250 | 69 | 360 | NA | NS | Erosion of natural deposits | | TDS (mg/L) | 44 | 460 | 676 | 160 | 870 | NA NA | 1000 mg/L | Erosion of natural deposits | | Specific Conductance (umhos/cm) | 99 | 760 | 1068 | 260 | 1300 | NA NA | 1600 umhos/cm | Substances that form ions when in water | | Chloride (mg/L) | 3 | 160 | 115 | 20 | 220 | NA NA | 500 mg/L | Erosion of natural deposits | | Sulfate (mg/L) | 2.6 | 62 | 221 | 30 | 310 | NA
NA | 500 mg/L | Erosion of natural deposits | | pH | 6.5 | 8.2 | 7.6 | 7.2 | 8.4 | NA
NA | 6.5 - 8.5 Units | NA | | Pri | | | | | 0.4 | NA. | 0.0 - 0.0 UIIIS | IVA | | PAOTERIOLOGICAL (V. | WATER DISTRIBUTION SYSTEM DATA SHEET | | | | | | | | | BACTERIOLOGICAL (% | | 4 | | , A | | ^ | E0/ Decc | Manager and the second | | Coliform Density | <1 | <1 | <1 | <1 | <1 | 0 | 5% Present/mo. | Municipal and industrial waste discharge | | ORGANICS (ug/L) | | | RUNNING ANNUAL AVERAGE | | | | 00 - | | | Total Trihalomethane | | | 41 | | | NA
NA | 80 ug/L | By-product of drinking water chlorination | | Total Haloacetic Acids | | | 21 | | | NA | 60 ug/L | By-product of drinking water chlorination | Nitrate in drinking water at levels above 45 ppm is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant omen and those with certain specific enzyme deficiencies. If you are caring for an infant, or if you are pregnant, you should ask advice from your health care provide ## **DEFINITIONS** AL (Action Level): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCL): Are set to protect the odor, taste, and appearance of drinking water. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below, which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. PDWS (Primary Drinking Water Standard): MCLs for contaminants that affect health along with their moni- toring and reporting requirements, and water treatment requirements. TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water. **NA:** Not applicable. ND: Not detected. **NS:** No standard. NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. ppb (Parts Per Billion): One part per billion (or micrograms per liter). ppm (Parts Per Million): One part per million (or milligrams per liter). pCi/L (Picocuries Per Liter): A measure of the natural rate of radioactive disintegration. umhos/cm (Micromhos Per Centimeter): A measure of electrical conductance. ## DISINFECTION PRACTICES The City uses two types of disinfectant: CHLORINE: Chlorine is used as the primary disinfectant chemical to kill or inactivate bacteria, viruses and other potentially harmful organisms in drinking water. Chlorine also serves as a secondary or residual disinfectant in the distribu- CHLORAMINES: Chloramines are created by adding ammonia that then combines with the chlorine as the drinking water leaves the treatment plant. Chlorine will still be used as the primary disinfectant; however, chloramines will be used as the secondary disinfectant in the water distribution system when treating source water from the Delta Mendota Cannel. For most regular uses of potable water, chloraminated water is the same as chlorinated water. However, chloramines must be removed for kidney dialysis treatment and may require recalibration of dialysis equipment. If you are receiving kidney dialysis treatment, please contact your doctor or dialysis technician. #### STANISLAUS RIVER WATER The City of Tracy is committed to providing a safe, reliable and affordable water supply to meet the needs of the community today and in the future. The City has participated with the cities of Manteca, Lathrop, Escalon, and the South San Joaquin Irrigation District to bring high quality Sierra water from the Stanislaus River. This water source has increased the reliability of City water supplies by having a third source of supply and redundancy in treatment facilities. Delivery of this water comprises the majority of water consumed in the City and is the only supply source used during the winter months. The Stanislaus River water supply is very soft water and has significantly reduced the minerals in the City's water supply. You may no longer need to use a water softener. ### CROSS CONNECTION PROTECTION Backflow prevention assemblies are designed to allow water to flow into your home or office from the public water system but not allow water to flow in the reverse direction, creating effective cross connection protection. Reverse flow can carry untreatable pollutants and contaminants back to the public water system, compromising the water quality for all customers. Backflow prevention assemblies are required to be tested annually to ensure they are effectively protecting the public water system. If your residence has an active well on the premises or your business has fire sprinklers and/or landscaping, you should have a backflow prevention assembly. For questions regarding annual testing requirements, please call Erich Delmas, Laboratory Supervisor at (209) 831-4488. ### WATER SOURCE ASSESSMENT An assessment of the drinking water sources for the City of Tracy's water system was completed in June 2001. The sources are considered most vulnerable to the following activities: airports (maintenance and fueling areas), gas stations (historic and current), mining activities (historic and current), septic and waste landfill dumps (historic and current). You may request a copy of the assessment by contacting the Water Production Superintendent, Dave Carter, at (209) 831-6302. The native groundwater under Tracy contains boron. Boron is a naturally occurring, non-carcinogenic, unregulated contaminant. Six of the City's wells contain elevated levels of boron. Although well water comprises only a small portion of the City's total water supply, well water does contain boron that may affect the babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals. #### SAMPLING RESULTS SHOWING **TREATMENT OF SURFACE WATER SOURCES** Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water (type of approved filtration technology used). ## **Turbidity of the filtered water must:** - 1. Be less than or equal to 0.3 NTU in 95% of measurements in a month. - Not exceed I NTU for m hours. - 3. Not exceed 3 NTU at any time. Turbidity Performance Standards: Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results, which meet performance standards, are considered to be in compliance with filtration requirements (that must be met through the water treatment process). Lowest monthly percentage of samples that met Turbidity Performance Standard No.1: 100%. Highest single turbidity measurement during 2015 was 0.203 NTU. | SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | | |---|--------------|------------|-----------|-------|------|---|--|--|--|--| | | | 90TH | | | | | | | | | | | | Percentile | # Sites | | | | | | | | | | # Of Samples | Level | Exceeding | | | | | | | | | Lead and Copper | Collected | Detected | AL | AL | MCLG | Typical Source of Contaminant | | | | | | Lead (ppm) | 33 | 0.0027 | 0 | 0.015 | 0 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | | | | | Copper (ppm) | 33 | 0.61 | 0 | 1.3 | 1.3 | Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preserviatives | | | | | Note: The City's water is in complete compliance with regulations related to lead. ² Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality and the effectiveness of disinfectants